' ‘ XMP Specification

Ad 0 be June 2005

W
l\lll

Adding Intelligence to Media

ADOBE SYSTEMS INCORPORATED
Corporate Headquarters

345 Park Avenue

San Jose, CA 95110-2704

(408) 536-6000
http://www.adobe.com

Copyright © 2000-2005 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, Acrobat Distiller, Framemaker, InDesign, Photoshop, PostScript, the PostScript logo,
and XMP are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries. MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Apple, Macintosh, and QuickTime are trademarks of Apple
Computer, Inc., registered in the United States and other countries. UNIX is a trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of their respective
owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should
not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or
statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability,
fitness for particular purposes, and noninfringement of third party rights.

Table of Contents

Preface 7
About This Document L e 7

Audience L e e 7

How This Document Is Organized. 7

Conventions used inthis Document. 7

Where to Go for More Information L 8

Changesin ThisDocument i 8

Chapter 1 Introduction . .11
Whatis Metadata? 11

Whatis XMP? e e e 11

What XMP Does Not Cover e e e 12

Chapter 2 XMP Data Model . .13
Metadata Properties L 13
Schemasand Namespaces e e 14

Property Values e 15

Simple Types e e 15

Structures L e 16

AIrays . . . e e e 16

Property Qualifiers. L 17

Chapter 3 XMP Storage Model .21
Serializing XMP e 21
xixmpmetaelement 22

rd:RDF element. 22
rdf:Descriptionelements. Lo 22

XMP Properties 24

RDF Issues e e 29

XMP Packets. e e e 30

Header. e 31

XMPData e 32

Padding 32

XMP Specification

- Table of Contents

Trailer L e e 32
Scanning Files for XMP Packets 33
External Storageof Metadata L L oo o 35

Chapter 4 XMPSchemas37

XMP Schema Definitions. 38
Dublin Core Schema. e 39
XMP Basic Schema 40
XMP Rights Management Schema oo 42
XMP Media Management Schema. oo 43
XMP Basic Job Ticket Schema 46
XMP Paged-Text Schema 47
XMP Dynamic Media Schema 48
Adobe PDF Schema e 53
Photoshop Schema 54
CameraRaw Schema 55
EXIFSchemas. e 58
EXIF Schema for TIFF Properties. 58
EXIF Schema for EXIF-specific Properties 60
EXIF Schema for Additional EXIF Properties 69
Data Representation and Conversion. 69
Property Value Types e e e e e e e 73
Basic Value Types. 73
Media Management Value Types 78
Basic Job/Workflow Value Types 80
Video Media Value Types i e 80
EXIF Schema Value Types i 83
Extensibility of Schemas L 87
Creating Custom Schemas 87
ExtendingSchemas 88

Chapter 5 Embedding XMP Metadata in Application Files91

TIFF e 92
JPEG. . . . e 93
JPEG 2000. 94
GIF . 95

4 XMP Specification

Table of Contents -

PNG . . . e 97
HTML. . . e e e 98
PDF . . e 100
Al (Adobe lllustrator) L 100
SVG/XML . . . o e e e e 101
PSD (Adobe Photoshop). 102
PostScriptand EPS e 103

Document-Level Metadata Lo oo 103

Object-LevelMetadata e 111
DNG e 112

XMP Specification 5

- Table of Contents

6 XMP Specification

Preface

About This Document

XMP (Extensible Metadata Platform) provides a standard format for the creation, processing,
and interchange of metadata, for a wide variety of applications.

This section contains information about this document, including how it is organized,
conventions used in the document, and where to go for additional information.

Audience

This document is intended for developers of applications that will generate, process, or
manage files containing XMP metadata.

How This Document Is Organized

This document has the following sections:

e Chapter 1, “Introduction”, explains what metadata is, and gives a brief overview of the
XMP model.

e Chapter 2, “XMP Data Model”, gives a conceptual overview of the data that XMP
supports. It describes how metadata is organized into schemas containing a number of
properties.

e Chapter 3, “XMP Storage Model”, shows the overall structure of XMP data in files.

e Chapter 4, “XMP Schemas”, lists common schemas that are used for XMP metadata, as
well as the value types used for properties. It also describes how new schemas can be
defined to meet needs beyond what is supported by the existing model.

o Chapter 5, “Embedding XMP Metadata in Application Files”, describes how XMP
metadata is embedded in a variety of specific application files.

Conventions used in this Document

The following type styles are used for specific types of text:

Typeface Style Used for:
Sans serif regular XMP property names. For example, xmp:CreationDate
Monospaced Regular All XML code

XMP Specification June 2005

Preface
Where to Go for More Information

Where to Go for More Information

See these sites for information on the Internet standards and recommendations on which XMP
Metadata is based:

Dublin Core Metadata Initiative http://purl.org/DC/
Extensible Markup Language (XML) http://www.w3.org/XML/
IETF Standard for Language element values (RFC 3066) http://www.ietf.org/rfc/rfc3066.txt?number=3066

ISO 639 Standard for Language Codes http://www.loc.gov/standards/iso639-2/
ISO 3166 Standard for Country Codes http://www.iso.ch/iso/en/prods-

services/iso3166ma/index.html
Naming and Addressing: URIs, URLs, and so on http://www.w3.org/Addressing/
Resource Description Framework (RDF): http://www.w3.org/RDF/

Resource Description Framework (RDF) Model and Syntax http://www.w3.0rg/TR/REC-rdf-syntax/
Specification

Unicode http://www.unicode.org

XML Namespaces http://www.w3.org/TR/REC-xml-names/

Changes in This Document

The following changes have been made since earlier editions of this document:

e April 2004:
— Added the EXIF namespace for the fields of the Flash, OECF/SFR, CFAPattern, and
DeviceSettings data types (under “EXIF Schema Value Types” on page 83)
o April 2005:
— Added note that all XMP names must be in an XML namespace (see ‘“Metadata
Properties” on page 13)
— Corrected namespace URI for Dimensions data type, changed “http;” to “http://” (see
“Dimensions” on page 74)
— Corrected value type for photoshop: SupplementalCategories, changed
“Text” to “bag Text” (under ‘“Photoshop Schema” on page 54)

— Corrected “uncalibrated” value for exif:ColorSpace, changed -32768 to 65535
(under “EXIF Schema for EXIF-specific Properties” on page 60)

— Clarified the description of the 2 GPSCoordinate value forms (under
“GPSCoordinate” on page 84)

June 2005 XMP Specification

http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

http://purl.org/DC/
http://www.w3.org/XML/

http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.loc.gov/standards/iso639-2/

http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/RDF/

http://www.w3.org/TR/REC-rdf-syntax/
http://www.unicode.org
http://www.w3.org/TR/REC-xml-names/

Changes in This Document

— Removed the suggested usage of an “instance ID” for the rdf : about attribute (see
“The rdf:about attribute” on page 23)

— Noted that the XMP must be encoded as UTF-8 when embedded in TIFF, JPEG,
JPEG 2000, PNG, PDF, PSD, and PostScript/EPS files (see Chapter 5, “Embedding
XMP Metadata in Application Files™)

o June 2005:
— Added qualification to XMP property and structure names in examples.
— Noted that URIs must end in “/” or “#” to be RDF compliant.
— References to RFC 1766 were changed to RFC 3066.
— Clarified Unicode encoding support.
— Clarified description of The rdf:about attribute.
— Noted that top-level RDF typed nodes are not supported.

— Added information for:
XMP Dynamic Media Schema
Camera Raw Schema
EXIF Schema for Additional EXIF Properties
— Corrected descriptions of tiff:DateTime (spelling of EXIF attribute
SubSecTime) and tiff:Artist (corresponds to first item in dc: creator array).
See EXIF Schema for TIFF Properties.
— Added Property Value Types:
Colorant
Font
Video Media Value Types
— Corrected Property Value Types descriptions:
Date
Locale
Job
— Added reference to DNG in Chapter 5, “Embedding XMP Metadata in Application
Files™.
— Noted that in PostScript, the XMP marker must be at the beginning of a line. See
Ordering of Content.

XMP Specification June 2005 9

Changes in This Document

10 June 2005 XMP Specification

Introduction

What is Metadata?

Metadata is data that describes the characteristics or properties of a document. It can be
distinguished from the main contents of a document. For example, for a word processing
document, the contents include the actual text data and formatting information, while the
metadata might include such properties as author, modification date, or copyright status.

There can be gray areas where the same information could be treated as content or metadata,
depending on the workflow. In general, metadata should have value on its own without regard
for the content. For example, a list of all fonts used in a document could be useful metadata,
while information about the specific font used for a specific paragraph on a page would be
logically treated as content.

Metadata allows users and applications to work more effectively with documents.
Applications can do many useful things with metadata in files, even if they are not able to
understand the native file format of the document. Metadata can greatly increase the utility of
managed assets in collaborative production workflows. For example, an image file might
contain metadata such as its working title, description, thumbnail image, and intellectual
property rights data. Accessing the metadata makes it easier to perform such tasks as
associating images with file names, locating image captions, or determining copyright
clearance to use an image.

File systems have typically provided metadata such as file modification dates and sizes. Other
metadata can be provided by other applications, or by users. Metadata might or might not be
stored as part of the file it is associated with.

What is XMP?

In order for multiple applications to be able to work effectively with metadata, there must be a
common standard that they understand. XMP—the Extensible Metadata Platform—is
designed to provide such a standard.

XMP standardizes the definition, creation, and processing of metadata by providing the
following:

e A data model: A useful and flexible way of describing metadata in documents: see
Chapter 2, “XMP Data Model”.

o A storage model: The implementation of the data model: see Chapter 3, “XMP Storage
Model”. This includes the serialization of the metadata as a stream of XML; and XMP

XMP Specification June 2005 11

Introduction
What XMP Does Not Cover

Packets, a means of packaging the data in files. Chapter 5, “Embedding XMP Metadata in
Application Files”, describes how XMP Packets are embedded in various file formats.

o Schemas: Predefined sets of metadata property definitions that are relevant for a wide range
of applications, including all of Adobe’s editing and publishing products, as well as for
applications from a wide variety of vendors. See Chapter 4, “XMP Schemas”. XMP also
provides guidelines for the extension and addition of schemas.

The following XMP features are described in separate documents:
o The Adobe XMP Toolkit describes Adobe’s open source toolkit API for developers.

® XMP Custom Panels describes how to create a Custom Panel Description file, which gives
developers the ability to define, create, and manage custom metadata properties by
customizing the standard File Info dialog in Adobe applications that support XMP.

XMP is designed to accommodate a wide variety of workflows and tool environments. It
allows localization and supports Unicode.

XMP metadata is encoded as XML-formatted text, using the W3C standard Resource
Description Framework (RDF), described in Chapter 3, “XMP Storage Model”.

NoTEe: The string “XAP” or “xap” appears in some namespaces, keywords, and related names
in this document and in stored XMP data. It reflects an early internal code name for
XMP; the names have been preserved for compatibility purposes.

What XMP Does Not Cover

Applications can support XMP by providing the ability to preserve and generate XMP
metadata, giving users access to the metadata, and supporting extension capabilities.

A number of related areas are outside the scope of XMP itself, and should be under the control
of the applications and tools that support XMP metadata, although this document may make
some recommendations. These areas include the following:

o The specific metadata set by each application.

o The operation of media management systems.

o The user interface to metadata.

e The definition of schemas beyond those defined by XMP.
e Validity and consistency checking on metadata properties.
e The requirement that users set or edit metadata.

Following the XMP schemas and guidelines presented in this document cannot guarantee the
integrity of metadata or metadata flow. That integrity must be accomplished and maintained
by a specific set of applications and tools.

12 June 2005 XMP Specification

http://www.w3.org/RDF/

XMP Data Model

This chapter describes the kinds of data that XMP supports.

e Metadata Properties” describes how metadata items are associated with a document in the
form of properties.

e “Schemas and Namespaces” on page 14 discusses how properties are named and organized
into groups called schemas.

e “Property Values” on page 15 describes the data types that can be used for XMP properties.

Metadata Properties

In XMP, metadata consists of a set of properties. Properties are always associated with a
particular entity referred to as a resource; that is, the properties are “about’ the resource. A
resource may be:

e A file. This includes simple files such as JPEG images, or more complex files such as
entire PDF documents.

e A meaningful portion of a file, as determined by the file structure and the applications that
process it. For example, an image imported into a PDF file is a meaningful entity that could
have associated metadata. However, a range of pages is not meaningful, because there is no
specific PDF structure that corresponds to it. In general, XMP is not designed to be used
with very fine-grained subcomponents, such as words or characters.

Any given property has a name and a value. Conceptually, each property makes a statement
about a resource of the form

“The property_name of resource is property_value.”
For example:
The author of Moby Dick is Herman Melville.

This statement is represented by metadata in which the resource name is “Moby Dick,” the
property name is “author,” and the property value is “Herman Melville,” as in the following

figure.
(Moby Dick)

Author Date Written

"Herman Melville" "1851"

XMP Specification June 2005 13

m XMP Data Model
Schemas and Namespaces

In the diagrams that illustrate the data model in this chapter, the top or root of the metadata tree
is the resource—that is, the document or component to which the metadata applies.

NoTe: All property and structure field names in XMP must be legal XML qualified names.
That is, they must be well formed XML names and in an XML namespace.

Schemas and Namespaces

A schema is a set of properties. Typically, schemas may consist of properties that are relevant
only for particular types of documents or for certain stages of a workflow. Chapter 4, “XMP
Schemas”, defines a set of standard metadata schemas and explains how to define new
schemas.

Each schema is identified by means of a namespace (which follows the usage of XML
namespaces). The use of namespaces avoids conflict between properties in different schemas
that have the same name but different meanings. For example, two independently designed
schemas might have a Creator property: in one, it might mean the person who created a
resource; in another, the application used to create the resource. Name conflicts are avoided by
qualifying property names with a schema-specific namespace prefix (see below).

Each schema consists of

o A schema name, which is a URI that serves to uniquely identify the schema. It is simply a
unique string. (Although it often looks like a URL, there might or might not be an actual
Web page at the URI. In the case of Adobe namespaces, currently there is no corresponding
Web page.) The URI must obey XML namespace rules, and must end with “/” or “#”.

The schema URI is a unique string, whose components have no significance. For example,
foo:/schema/1.0/ and foo: /schema/2.0/ are completely different schemas with no
necessary relationship between them.

IMPORTANT: 7o be RDF-compliant, the URI must be properly terminated with "/" or
"H#"

e A schema namespace prefix, which is a short abbreviation for the full schema name. The
schema namespace prefixes used here are not formal. Following the rules of XML
namespaces, the schema namespace prefix is simply shorthand for the schema URI and is
local to the scope of the xmlns attribute that declares it.

For example, in the following code, the namespace prefix for the XMP Basic Schema is
defined to be xmp:

xmlns:xmp="http://ns.adobe.com/xap/1.0/"
Following XML qualified name conventions, properties in a schema are written as

prefix:name

14 June 2005 XMP Specification

XMP Data Model
Property Values

where prefixis a schema namespace prefix and name is a valid simple XML name; for
example, xmp:CreateDate.

Property Values

The data types that can represent the values of XMP properties are in three basic categories,
described here: simple types, structures, and arrays. Since XMP metadata is stored as XML,
values of all types are written as Unicode strings.

This section shows conceptual examples of XMP data types. “Serializing XMP” on page 21
shows how these examples are represented in XML. Definitions of all predefined properties
and value types can be found in Chapter 4, “XMP Schemas”.

Simple Types

A simple type has a single literal value. Simple types include familiar ones such as strings,
booleans, integers and real numbers, as well as others such as Choice.

< XMP_Specification. pdf>

dc:format xmp:CreateDate

"application/pdf" "2002-08-15T17:10:04z"

In this figure, the document XMP_Specification.pdf is shown with 2 simple properties:
o The value of the property dc:format is the MIMEType value "application/pdf".
o The value of the property xmp:CreateDate is the Date value "2002-08-15T17:10:04Z".

XMP Specification June 2005

15

m XMP Data Model
Property Values
Structures

A structured property consists of one or more named fields.

QCMP_Specification .pdf >

xmpTPg:MaxPageSize

stDim:w

stDim:h

"11.0"

This example shows a single structured property whose type is Dimensions. The structure has
its own XML namespace prefix (stDim), although this is not required of structure fields in
general. There are three fields: stDim:w (width), stDim:h (height) and stDim:unit (units), whose
values are "8.5", "11.0" and "inch".

A field in a structure can itself be a structure or an array.

Arrays

An array consists of a set of values. You can think of an array as a structure whose field names
are ordinal numbers, as shown in this figure.

< XMP_Specification.pdf)

dc:subject

"metadata"
"schema | |"XMP" |

The individual elements of an array are strongly recommended to be of the same type. (In the
example, the elements are of type Text.) In addition to simple types, array elements may be
structures or arrays.

16 June 2005 XMP Specification

XMP Data Model
Property Values

XMP supports three types of arrays: unordered, ordered, and alternative, described in the
following sections.

Unordered Arrays

An unordered array is a list of values whose order does not have significance. For example,
the order of keywords associated with a document does not generally matter, so the dc:subject
property is defined as an unordered array.

In the schema definitions, an unordered array is referred to as a bag. For example, dc:subject is
defined as “bag Text”.

Ordered Arrays

An ordered array is a list whose order is significant. For example, the order of authors of a
document might matter (such as in academic journals), so the dc:creator property is defined as
an ordered array.

In the schema definitions, an ordered array is referred to as a seq. For example, dc:creator is
defined as “seq ProperName”.

Alternative Arrays

An alternative array is a set of one or more values, one of which should be chosen. In the
schema definitions, an alternative array is referred to as an alt. For example, xmp:Thumbnails
is defined as “alt Thumbnail”. There are no specific rules for selection of alternatives: in some
situations, an application may make a choice; in others, a user may make a choice. The first
item in the array is considered by RDF to be the default value.

A common example is an array that contains the same logical text (such as a title or copyright)
in multiple languages. This is known as a language alternative; it is described further in
“Language Alternatives” on page 18.

Property Qualifiers

XMP Specification

Any individual property value may have other properties attached to it; these attached
properties are called property qualifiers. They are in effect “properties of properties”; they can
provide additional information about the property value. For example, a digital resource
representing a musical production might have one or more authors, specified using the
dc:creator property, which is an array (see the figure below). Each array value might have a
property qualifier called ns:role, which could take a value of "composer" or "lyricist" or
possibly other values.

NoTE: At this time, only simple properties may have qualifiers, and the qualifiers themselves
must be simple values (not structures or arrays). This is because of limitations in early
versions of the Adobe XMP Toolkit.

June 2005

17

m XMP Data Model
Property Values

(Pirates of Penzance>

dc:creator

"William Gilbert" "Arthur Sullivan"
ns:role ns:role
"lyricist" "composer"

Property qualifiers allow values to be extended without breaking existing usage. For example,
the ns:role qualifier in the diagram does not interfere with readers who simply want the
dc:creator names. An alternative would be to change dc:creator values to structures with name
and role fields, but that would confuse old software that expected to find a simple value.

The most common specific use of property qualifiers is for language alternative arrays (see
next section).

Language Alternatives

Language alternatives allow the text value of a property to be chosen based on a desired
language. Each item in a language alternative array is a simple text value, which must have a
language qualifier associated with it. The language qualifier is a property qualifier, as
described in the previous section. Its property name is xml:lang, and its value is a string that
conforms to RFC 3066 notation (see http://www.ietf.org/rfc/rfc3066.txt.).

18 June 2005 XMP Specification

http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc1766.txt

XMP Data Model _
Property Values

XMP requires the "x-default" language code to be supplied as the default. It should be
the first item in the array, so that RDF-aware applications that are unaware of XMP will also
use it. The figure below shows an example:

CXMP_Speci fication. pdf>

dc:title
1 alt
2 "XMP - Piattaforma Estendible di Metadata"
4
"XMP - Extensible "XMP - Extensible xml:lang

Metadata Platform"
Metadata Platform" 3

xml:lang XMP - Une Platforme Extensible it-it

xml:lang pour les Métadonnées"

"x-default" ; . xml:lang
en-us
o

XMP Specification June 2005 19

m XMP Data Model
Property Values

20 June 2005 XMP Specification

XMP Storage Model

This chapter describes how XMP metadata that conforms to the data model discussed in the
previous chapter is stored (serialized) in files.

o XMP properties are serialized as XML, specifically RDF (see “Serializing XMP”, below).

e The serialized data is wrapped in packets for embedding in files. “XMP Packets” on
page 30 describes the structure and capabilities of these packets.

e Packets are stored in files in a natural manner for each file format; specific file formats are
discussed in Chapter 5, “Embedding XMP Metadata in Application Files”.

e “External Storage of Metadata” on page 35 describes how to store XMP data in a separate
file from the document with which it is associated.

Serializing XMP

XMP Specification

In order to represent the metadata properties associated with a document (that is, to serialize it
in a file), XMP makes use of the Resource Description Framework (RDF) standard, which is
based on XML. By adopting the RDF standard, XMP benefits from the documentation, tools,
and shared implementation experience that come with an open W3C standard. RDF is
described in the W3C document Resource Description Framework (RDF) Model and Syntax
Specification at http://www.w3.0rg/TR/REC-rdf-syntax/.

The sections below describe the high-level structure of XMP data in an XMP Packet:

o The outermost element is optionally an x:xmpmeta element, which contains a single
rdf:RDF element (or the rdf : RDF element can be outermost).

e The rdf :RDF element contains one or more rdf:Description elements
e Each Description element contains one or more XMP Properties.

The examples in this document are shown in RDF syntax. RDF has multiple ways to serialize
the same data model: a “typical” or verbose way, and several forms of shorthand. The
examples shown here use the typical way plus a few forms of shorthand used by the Adobe
XMP Toolkit; they are designed to assist human readers of stored XMP. Any valid shorthand
may be used.

XMP supports a subset of RDF; see “RDF Issues” on page 29 for further information.

XMP must be serialized as Unicode. XMP supports the full Unicode character set, and is
stored in files using one of the five Unicode encodings. The entire XMP packet must use a
single encoding. Individual file formats can, and generally do, specify a particular encoding,
often UTF-8. For details, see the descriptions of file formats in Chapter 5, “Embedding XMP
Metadata in Application Files”.

June 2005

21

http://www.w3.org/TR/REC-rdf-syntax/

m XMP Storage Model
Serializing XMP
x:xmpmeta element

It is recommended that an x: xmpmeta element be the outermost XML element in the
serialized XMP data, to simplify locating XMP metadata in general XML streams. The format
is:

<x:xmpmeta xmlns:x='adobe:ns:meta/'>
...the serialized XMP metadata
</x:xmpmeta>

The xmpmeta element can have any number of attributes, in any order. All unrecognized
attributes are ignored, and there are no required attributes. The only defined attribute at present
is x: xmptk, written by the Adobe XMP Toolkit; its value is the version of the toolkit.

NoTe: Earlier versions of XMP suggested use of the x: xapmeta element. Applications
filtering input should recognize both.

rdf:RDF element

Immediately within the x:xmpmeta element should be a single rdf : RDF element.

<x:xmpmeta xmlns:x='adobe:ns:meta/'>
<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

</rdf :RDF>
</x:xmpmeta>

rdf:Description elements

The rdf : RDF element can contain one or more rdf : Description elements. The following
example shows a single rdf : Description element:

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=""
xmlns:dc="http://purl.org/dc/elements/1.1/">
. Dublin Core properties go here
</rdf :Description>
</rdf :RDF>

By convention, all properties from a given schema, and only that schema, are listed within a
single rdf : Description element. (This is not a requirement, just a means to improve
readability.) In this example, properties from the Dublin Core schema are specified within the
rdf :Description element. The xmlns:dc attribute defines the namespace prefix (dc:) to
be used. Properties from other schemas would be specified inside additional

rdf :Description elements.

NoTe: The rdf:Description element is also used when specifying structured properties
(see “Structures” on page 25).

22 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

The rdf:about attribute

The rdf : about attribute on the rdf : Description element is a required attribute that
identifies the resource whose metadata this XMP describes. The value of this attribute should
generally be empty. Otherwise it may be a URI that names the resource in some manner that is
meaningful to the application writing the XMP. The XMP Specification does not mandate or
recommend any particular interpretation for this URI

All rdf :Description elements within an rdf : RDF element must have the same value for
their rdf : about attributes.

Instance IDs

XMP Specification

When referring to computer files, there can often be ambiguity. The contents of a file can
change over time. Depending on the situation, it might be desirable to refer to either:

e a specific state of the file as it exists at a point in time, or
e the file in general, as a persistent container whose content can change.

Some characteristics of a file (such as the application that created it) would normally be
expected to be persistent over its life. Other characteristics (such as word count) would be
expected to change as the content of the file changes. Some characteristics (such as copyright
information or authors’ names) might or might not change.

In the same way, XMP properties that represent such characteristics of a file are inherently
ambiguous as to whether they refer to the current content of a file or to the file in general.
XMP itself provides no mechanisms for distinguishing these. Schemas are encouraged, but not
required, to define properties in a way that makes this clear.

This document uses the term resource to refer to the “thing the metadata is about.” Depending
on the context, resources may refer to either the specific or persistent aspects described above.
In order to refer unambiguously to a specific state of the file, we use the term instance.

NoTe: This terminology should be distinguished from HTTP terminology, where resource is
most often used in the sense of “container”, while entity or entity-part is always used to
mean “the current content of all or part of a resource at some point in time.”

The instance IDs mentioned above are specific IDs, since they are created every time a file is
saved. They do not provide any connection between different versions of a document.
However, in many cases, an instance ID can also be used to locate the resource, because if the
instance referred to is the content of a resource at some point in time, the instance identifier
also denotes that resource at that time. Therefore, using an instance ID in the rdf : about
attribute allows identification of both the resource and the particular content it had at the time
the metadata was generated or stored.

NoTE: In some situations, more persistent identification might be desired. It can be provided
by using the xmpMM:DocumentID property in the XMP Media Management schema.

An instance ID should be a GUID/UUID-style ID, which is a large integer that is guaranteed to
be globally unique (in practical terms, the probability of a collision is so remote as to be

June 2005

23

24

XMP Storage Model
Serializing XMP

effectively impossible). Typically 128- or 144-bit integers are used, encoded as 22 or 24 base-

64 characters.

XMP does not require any specific scheme for generating the unique number. There are
various common schemes available for that purpose, such as:

e Using physical information such as a local Ethernet address and a high resolution clock.

NoTe: When creating a unique ID, applications must consider tradeoffs between privacy
and the desire to create an audit trail. Adobe applications favor privacy and do not
include Ethernet addresses.

e Using a variety of locally unique and random data, then computing an MD5 hash value.
This avoids privacy concerns about the use of Ethernet addresses. It also allows for
regeneration of the ID in some cases; for example if the MDS5 hash is computed using the
image contents for a resource that is a digital photograph.

Because the rdf : about attribute is the only identification of the resource from the RDF point
of view, it is useful to format its value in a standard manner. This lets other RDF-aware
software know what kind of URI is used (in particular, that it is not a URL). There is no formal
W3C recommendation for URIs that are based on an abstract UUID. The following two

proposals may be relevant:

® http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-01.txt

o http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-03.ixt

XMP Properties

This section shows how the properties diagrammed in “Property Values” on page 15 would be

serialized in XMP. The data diagrams are repeated for convenience.

Simple Types
(XMP_Specification .pdf>
dc:format xmp:CreateDate
"application/pdf" "2002-08-15T17:10:04z"

June 2005

XMP Specification

http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-01.txt
http://www.ietf.org/internet-drafts/draft-king-vnd-urlscheme-03.txt

XMP Storage Model
Serializing XMP

In XMP, these properties would specified as follows:

<rdf:Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc: format>application/pdf</dc: format>
</rdf :Description>

<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
<xmp :CreateDate>2002-08-15T17:10:04%Z</xmp:CreateDate>
</rdf :Description>

Alternatively, there is a common form of RDF shorthand that writes simple properties as
attributes of the rdf : Description element. The second rdf : Description element above
would be specified as follows:

<rdf :Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmp : CreateDate="2002-08-15T17:10:04Z" />

NoTe: All property names must be legal XML names.

Structures

<:XMP_Specification.pdf :)

xmpTPg:MaxPageSize

stDim:w

stDim:h
n 11 . 0 n

This example shows a property that is a structure containing three fields. It would be serialized
in XML as:

<rdf :Description rdf:about=""
xmlns :xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/">
<xmpTPg :MaxPageSize>
<rdf :Description
xmlns:stDim="http:ns.adobe.com/xap/1.0/sType/Dimensions#">
<stDim:w>4</stDim:w>
<stDim:h>3</stDim:h>
<stDim:unit>inches</stDim:unit>
</rdf :Description>
</xmpTPg : MaxPageSize>
</rdf :Description>

The element hierarchy consists of:

o The rdf :Description element, described above, which specifies the namespace for the
property.

XMP Specification June 2005

25

26

XMP Storage Model
Serializing XMP

o The xmpTPg:MaxPageSize element, which is a property of type Dimensions

o Aninner rdf :Description element, which is necessary to declare the presence of a
structure. It also defines the namespace that is used by the structure fields. Inner
rdf :Description elements do not have an rdf : about attribute.

NoTE: Structure fields are not required to use a schema namespace; they must conform to
the rules of XML qualified names.

o The fields of the Dimensions structure.

Arrays

(: XMP_Specification.pdf :)

dc:subject

"metadata"
"schema | |"XMP" |

This example (from “Arrays” on page 16) is serialized as follows:

<rdf :Description rdf:about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:subject>
<rdf :Bag>
<rdf:li>metadata</rdf:1i>
<rdf:li>schema</rdf:1i>
<rdf:1i>XMP</rdf:1i>
</rdf :Bag>
</dc:subject>
</rdf :Description>

The dc:subject property is an unordered array, represented by the type rdf : Bag. It contains
one rdf :11 element for each item in the array. Ordered and alternative arrays are similar,
except that they use the types rdf : Seq and rdf : Alt, respectively. An example of an
alternative array is shown below in “Language Alternatives”.

June 2005 XMP Specification

XMP Storage Model
Serializing XMP

Property Qualifers
Property qualifiers can be serialized in one of two ways:
o There is a general representation, as shown in the following figure.

o There is a special representation for xmllang qualifiers (see “Language Alternatives” on
page 28)

Here is a general example, repeated from “Property Qualifiers” on page 17.

<:Pirates of Penzancej)

dc:creator

"William Gilbert" "Arthur Sullivan"
ns:role ns:role
"lyricist™" "composer"

The figure above shows an array with two elements, each of which has a property qualifier
called ns:role (defined in the fictitious namespace “ns : myNamespace/”). It would be
serialized as follows:

<rdf :Description rdf:about=""
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:ns="ns:myNamespace/">
<dc:creator>
<rdf:Seqg>
<rdf:1i>
<rdf :Description>
<rdf:value>William Gilbert</rdf:value>
<ns:role>lyricist</ns:role>
</rdf :Description>
</rdf:1li>
<rdf:1i>
<rdf :Description >
<rdf:value>Arthur Sullivan</rdf:value>
<ns:role>composer</ns:role>
</rdf :Description>
</rdf:1li>
</rdf:Seqg>
</dc:creator>
</rdf :Description>

XMP Specification June 2005 27

m XMP Storage Model
Serializing XMP

The presence of property qualifiers is indicated by a special use of the rdf : Description
element. Each rdf : 11 array item in the example contains an rdf : Description element,
which itself contains the following:

e a special element called rdf : value that represents the value of the property

e zero or more other elements that represent qualifiers of the value. In this case, there is one
property qualifier called ns:role.

Language Alternatives

Text properties may have an xml:lang property qualifier that specifies the language of the text.
A common use is with language alternative arrays.

<%MP_Specification.pdf:>

dc:title

"XMP - Piattaforma Estendible di Metadata"

"XMP - Extensible .
"XMP - : xml:lan
Metadata Platform" P Extensible 3 9
Metadata Platform"
. "XMP - Une Platforme Extensible "it-it"
xml:lang 4 Lo
xml:lang pour les Métadonnées

"x-default" |:] xml:lang
en-us
"fr-fr"

Language alternatives are a form of rdf : Alt array, referred to as the Lang Alt type. In this
example, each array item is a simple text value; the value has a property qualifier, specified as
the property xmllang, giving the language of that value.

The XMP for this array looks like this:

<xmp:Title>
<rdf:Alt>
<rdf:1i xml:lang="x-default">
XMP - Extensible Metadata Platform </rdf:1i>
<rdf:1i xml:lang="en-us">XMP - Extensible Metadata Platform</rdf:1i>
<rdf:1i xml:lang="fr-fr">
XMP - Une Platforme Extensible pour les Métadonnées</rdf:1i>
<rdf:1i xml:lang="it-it">
XMP - Piattaforma Estendible di Metadata</rdf:1i>
</rdf:Alt>
</xmp:Title>

28 June 2005 XMP Specification

XMP Storage Model
Serializing XMP

The xml:lang qualifier is written as an attribute of the XML element whose character data is the
value (in this case, the rdf: 11 elements). Note also the special language value
"x-default", which specifies the default title to be used.

RDF Issues

Unsupported Features

XMP uses a subset of RDF. Valid XMP is limited to the RDF described in the previous
sections, along with all equivalent shorthand. All XMP is valid RDF, but a number of features
of the RDF specification are not valid XMP, in particular:

The rdf : RDF element is required by XMP (it is optional in RDF).
Top-level elements must be rdf : Description elements.

The rdf : ID attribute is ignored.

The rdf :bagID attribute is ignored.

The rdf : aboutEach or rdf : aboutEachPrefix attributes are not supported (entire
rdf :Description ignored).

The rdf :parseType="'Literal" attribute is not supported.
Top-level RDF typed nodes are not supported.

Validation

If DTD or XML Schema validation is required, be aware that RDF provides many equivalent
ways to express the same model. Also, the open nature of XMP means that it is in general not
possible to predict or desirable to constrain the allowable set of XML elements and attributes.
There appears to be no way to write a DTD that allows arbitrary elements and attributes. Even
use of ANY requires declared child elements (see validity constraint #4 in section 3 of the
XML specification).

The recommended approach to placing XMP in XML using DTD validation is to wrap the
XMP Packet in a CDATA section. This requires escaping any use of “]]1>" in the packet.

rdf:about Property

All rdf :Description elements within an rdf : RDF element must have the same value for
their rdf : about attributes.

XMP Specification

June 2005 29

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/XML/

m XMP Storage Model
XMP Packets

XMP Packets

The XMP Packet format specifies how XMP metadata is embedded in files. It consists of a
“wrapper” around the serialized XMP data described in the previous section. XMP Packets:

e may be embedded in a wide variety of binary and text formats, including native XML files.

e are delimited by easy-to-scan markers. Such markers are XML syntax-compatible to allow
transmission to an XML parser without additional filtering.

e deal with arbitrary positioning within a byte stream (so as not to rely on machine word
boundaries, and so on).

e cenable in-place editing, including expansion, of metadata.
e allow multiple packets to be embedded in a single data file.

Chapter 5, “Embedding XMP Metadata in Application Files”, gives information on how XMP
Packets are embedded in specific file formats. Applications may also scan files for XMP
Packets without knowledge of the file format itself, although this should be regarded as a last
resort (see “Scanning Files for XMP Packets” on page 33).

The following figure shows a schematic of an XMP Packet. It contains a header, XML data,
padding, and a trailer.

Header

Serialized XMP

Padding

Trailer

Here is an outline of an XMP Packet, showing the text of the header and trailer:

<?xpacket begin="H" id="W5MOMpCehiHzreSzNTczkc9od"?>
. the serialized XMP as described above:
<x:xmpmeta xmlns:x="adobe:ns:meta/">
<rdf:RDF xmlns:rdf= ...>

</rdf : RDF>
</x:xmpmeta>
. XML whitespace as padding ...
<?xpacket end="w"?>

Where ‘I represents the Unicode “zero width non-breaking space character” (U+FEFF) used
as a byte-order marker.

30 June 2005 XMP Specification

Header

XMP Storage Model
XMP Packets

An XMP Packet must conform to the Well-Formedness requirements of the XML
specification, except for the lack of an XML declaration at its start. Different packets in a file
can be in different character encodings, and packets must not nest.

The following sections describe the parts of the packet illustrated above.

The header is an XML processing instruction of the form:
<?xpacket ... ?>

The processing instruction contains information about the packet in the form of XML
attributes. There are two required attributes: begin and id, in that order. Other attributes can
follow in any order; unrecognized attributes should be ignored. Attributes must be separated
by exactly one space (U+0020) character.

Attribute: begin

This required attribute indicates the beginning of a new packet. Its value is the Unicode zero-
width non-breaking space character U+FEFF, in the appropriate encoding (UTF-8, UTF-16, or
UTF-32). It serves as a byte-order marker, where the character is written in the natural order of
the application (consistent with the byte order of the XML data encoding).

For backward compatibility with earlier versions of the XMP Packet specification, the value of
this attribute can be the empty string, indicating UTF-8 encoding.

“Scanning Files for XMP Packets” on page 33 describes how an XMP Packet processor
should read a single byte at a time until it has successfully determined the byte order and
encoding.

Attribute: id

The required id attribute must follow begin. For all packets defined by this version of the
syntax, the value of id is the following string of 7-bit ASCII characters:

W5MOMpCehiHzreSzNTczkc9d

The string must be encoded in the character encoding of the overall packet. For example, if the
overall encoding is big-endian UTF-16, the id value should be converted from 7-bit ASCII to
UTF-16 by inserting nulls.

Attribute: bytes

XMP Specification

NoTe: This attribute is deprecated.

The optional bytes attribute specifies the total length of the packet in bytes, which can allow
faster scanning of XMP Packets. If the length extends beyond the end of the trailer processing
instruction, the additional bytes must be properly encoded Unicode whitespace and are
considered padding.

June 2005

31

m XMP Storage Model
XMP Packets

Use the bytes attribute only for an XMP Packet embedded in a binary file. Do not use it for
XMP Packets embedded in text files, since the length of text can innocently change when
moved among computers. For example, moving a text file from a Macintosh or UNIX system
to Windows typically causes all single byte line endings (CR or LF) to become two bytes
(CRLF). This would invalidate the length given by the bytes attribute.

Attribute: encoding

NoTEe: This attribute is deprecated.

The optional encoding attribute is identical to the encoding attribute in the XML
declaration (see productions [23] and [80] in the XML specification). It specifies the character
encoding of the entire packet. It should be consistent with the Unicode encoding implied by
the begin attribute.

XMP Data

The bytes of the XMP data are placed here. Their encoding must match the encoding implied
by the header’s begin attribute. The structure of the data is described in “Serializing XMP”
above.

The XMP data should not contain an XML declaration. The XML specification requires that the
XML declaration be “the first thing in the entity”; this is not the case for an embedded XMP
Packet.

NoTeE: An XMP Packet should not contain other XML that does not conform to XMP.

Padding

It is recommended that applications allocate 2 KB to 4 KB of padding to the packet. This
allows the XMP to be edited in place, and expanded if necessary, without overwriting existing
application data. The padding must be XML-compatible whitespace; the recommended
practice is to use the space character (U+0020) in the appropriate encoding, with a newline
about every 100 characters.

Trailer

This required processing instruction indicates the end of the XMP Packet.
<?xpacket end='w'?>
Attribute: end

The end attribute is required, and must be the first attribute.

NoTe: Other unrecognized attributes can follow, but should be ignored. Attributes must be
separated by exactly one space (U+0020) character.

32 June 2005 XMP Specification

http://www.w3.org/TR/REC-xml

XMP Storage Model
XMP Packets

The value of end indicates whether applications that do not understand the containing file
format are allowed to update the XMP Packet:

e r means the packet is “read-only” and must not be updated in place.

NOTE: ris not meant to restrict the behavior of applications that understand the file format
and are capable of properly rewriting the file.

e w means the packet can be updated in place, if there is enough space. The overall length of
the packet must not be changed; padding should be adjusted accordingly. The original
encoding and byte order must be preserved, to avoid breaking text files containing XMP or
violating other constraints of the original application.

Scanning Files for XMP Packets

This section explains how files can be scanned for XMP Packets, and why this should be done
with caution.

Caveats

Knowledge of individual file formats provides the best way for an application to get access to
XMP Packets. See Chapter 5, “Embedding XMP Metadata in Application Files” for detailed
information on how XMP data is stored in specific file formats.

Lacking this information, applications can find XMP Packets by scanning the file. However,
this should be considered a last resort, especially if it is necessary to modify the data. Without
knowledge of the file format, simply locating packets may not be sufficient. The following are
some possible drawbacks:

e It may not be possible to determine which resource the XMP is associated with. If a JPEG
image with XMP is placed in a page layout file of an application that is unaware of XMP,
that file has one XMP Packet that refers to just the image, not the entire layout.

e When there is more than one XMP Packet in a file, it may be impossible to determine
which is the “main” XMP, and what the overall resource containment hierarchy is in a
compound document.

e Some packets could be obsolete. For example, PDF files allow incremental saves.
Therefore, when changes are made to the document, there might be multiple packets, only
one of which reflects the current state of the file.

Scanning Hints

XMP Specification

A file should be scanned byte-by-byte until a valid header is found. First, the scanner should
look for a byte pattern that represents the text

<?xpacket begin=

which will be one of the following byte patterns:

June 2005 33

m XMP Storage Model
XMP Packets

e 8-bit encoding (UTF-8, ASCII 7-bit, ISOLatin-1):
0x3C 0x3F 0x78 0x70 0x61 0x63 0x6B
0x65 0x74 0x20 0x62 0x65 0x67 0x69 0x6E 0x3D

e 16-bit encoding (UCS-2, UTF-16): (either big- or little-endian order)
0x3C 0x00 Ox3F 0x00 0x78 0x00 0x70 0x00 0Ox61 0x00
0x63 0x00 0x6B 0x00 0x65 0x00 0x74 0x00 0x20 0x00 0x62 0x00
0x65 0x00 0x67 0x00 0x69 0x00 Ox6E 0x00 0x3D [0x00]

o 32-bit encoding (UCS-4): the pattern is similar to the UCS-2 pattern above, except with
three 0x00 bytes for every one in the UCS-2 version.

For 16-bit encodings, a scanner cannot be sure whether the 0x00 values are in the high- or
low-order half of the character until it reads the byte-order mark (the value of the begin
attribute). As you can see from the pattern, it starts with the first non-zero value, regardless of
byte order, which means that there might or might not be a terminal 0x00 value.

A scanner can choose to simply skip 0x00 values and search for the 8-bit pattern. Once the
byte order is established, the scanner should switch to consuming characters rather than bytes.

After finding a matching byte pattern, the scanner must consume a quote character, which can
be either the single quote (apostrophe) (U+0027) or double quote (U+0022) character.

NoTe: Individual attribute values in the processing instruction can have either single or
double quotes. The following header is well-formed:
<?xpacket begin="H" id='WSMOMpCehiHzreSzNTczkc9d' ?>

The scanner is now ready to read the value of the begin attribute, followed by the closing
quote character:

UTF-8: OxXEF 0xBB OxBF
UTF-16, big-endian: 0xXFE OxFF

UTF-16, little-endian: 0xFF 0xFE

UTF-32, big-endian: 0x00 0x00 OxXFE OxFF
UTF-32, little-endian: 0xFF OxFE 0x00 0x00

NoTe: If the attribute has no value, the encoding is UTF-8.

The scanner now has enough information to process the rest of the header in the appropriate
character encoding.

34 June 2005 XMP Specification

XMP Storage Model
External Storage of Metadata

External Storage of Metadata

XMP Specification

It is suggested, though not required, that XMP metadata be embedded in the file that the
metadata describes (as XMP Packets). There are cases where this is not appropriate or
possible, such as database storage models, extremes of file size, or due to format and access
issues. Small content intended to be frequently transmitted over the Internet might not tolerate
the overhead of embedded metadata. Archival systems for video and audio might not have any
means to represent the metadata. In addition, some high-end digital cameras have a
proprietary, non-extensible file format for “raw” image data and typically store EXIF metadata
as a separate file.

If metadata is stored separately from content, there is a risk that the metadata can be lost. The
question arises of how to associate the metadata with the file containing the content.
Applications should:

e Write the external file as a complete well-formed XML document, including the leading
XML declaration.

e The file extension should be .xmp. For Mac OS, optionally set the file’s type to ' TEXT'.
e If a MIME type is needed, use application/rdf+xml.

e Write external metadata as though it were embedded and then had the XMP Packets
extracted and catenated by a postprocessor.

e If possible, place the instance ID used in the rdf : about attribute within the file the XMP
describes, so that format-aware applications can make sure they have the right metadata.

For applications that need to find external XMP files, look in the same directory for a file with
the same name as the main document but with an .xmp extension. (This is called a sidecar
XMP file.)

June 2005

35

m XMP Storage Model
External Storage of Metadata

36 June 2005 XMP Specification

XMP Schemas

This chapter contains the following information:

e Definitions for the standard XMP Schemas
— “Dublin Core Schema” on page 39

“XMP Basic Schema” on page 40

“XMP Rights Management Schema” on page 42
“XMP Media Management Schema” on page 43
“XMP Basic Job Ticket Schema” on page 46
“XMP Paged-Text Schema” on page 47

“XMP Dynamic Media Schema” on page 48

e Definitions for a set of specialized schemas:
— “Adobe PDF Schema” on page 53
— “Photoshop Schema” on page 54

— “Camera Raw Schema” on page 55

“EXIF Schemas” on page 58

e Definitions and explanations of property values used by the schemas (“Property Value
Types” on page 73)

o Guidelines for extending XMP (“Extensibility of Schemas” on page 87).

NoTEe: This document does not provide details of the IPTC schema. For complete information

on this schema, see the IPTC Web site at http://www.iptc.org/IPTC4XMP/.

XMP metadata may include properties from one or more of the schemas. For example, a
typical subset used by many Adobe applications might include the following:

e Dublin Core schema: dc:title, dc:creator, dc:description, dc:subject, dc:format,
dc:rights

e XMP basic schema:xmp:CreateDate, xmp:CreatorTool, xmp:ModifyDate ,
xmp:MetadataDate

e XMP rights management schema: xmpRights:WebStatement, xmpRights:Marked

e XMP media management schema: xmpMM:DocumentID

XMP Specification

June 2005 37

http://www.iptc.org/IPTC4XMP/

n XMP Schemas
XMP Schema Definitions

XMP Schema Definitions

The schema definitions in this chapter show the namespace string that identifies the schema,
and a preferred schema namespace prefix, followed by a table that lists all properties defined
for the schema. Each table has the following columns:

e Property: the name of the property, including the preferred namespace prefix.

e Value Type: The value type of the property, with links to where each value type is
described in “Property Value Types” on page 73. Array types are preceded by the container
type: alt,